
 

Learning Sheet 

 

 

 

 

 

 

 

 

 

 

Technical Debt 

 

Learning Goal 

The goal of this learning activity is to 

introduce the students to LEAN and Agile 

practices by taking the very simple concept 

of technical debt in the context of software 

development, make them experience its 

impact and try to take action to counter it. 

Learning Objectives and Outcome 

After playing this scenario, learners will be able to:  

 Understand the concept of “technical debt”. 

 Apply the best procedures and techniques to balance “technical debt” and 

software releases. 

How to Use LEAP 

In this game, the player takes the role of a software development team manager working on 

a project that will last for 10 sprints. His/her job is to create the highest amount of new 

software value by the end of the project. To that purpose the player has to balance the 

software development process that generates new value (NV) but increases technical debt 

(TD) and the actual reduction of TD through several investment measures available. 

During each turn, the software development team has a finite capacity to create new 

software value and deal with technical deb. At the beginning of the game, the player has a 

certain number of points available to create new value (NV), and a certain number of points 

for technical debt (TD). 

Each turn (representing a sprint), the player rolls a dice for creating new value and takes the 

total of all points rolled. Then he/she rolls the technical debt dice and totals that number. 

The net new value (NNV) created in each turn is the NV total minus the TD total. 



Initial screen allows to start a new game or to see 

the configuration options.  

 

The options menu allows to configure the 

language of the game, to see some instructions of 

the game and to play a game tutorial. The first 

time you play the game you should check the 

instructions and the tutorial. Show the students 

how to change the language of the game. 
      

Playing the tutorial is important because it allows 

to see what is the effect of applying an investment. 

Reduced complexity 

Effect: remove 7 points on average from TD and 

add them in NV. 

Cost: 7 points on average from NV to TF for 3 

sprints. 

Continuous integration 

Effect: remove 3.5 points on average from TD and 

add them in NV. 

Cost: 10.5 points on average from NV to TD for 2 

sprints. 

Increased test coverage 

Effect: remove 3 points from TD each sprint. 

Cost: 3.5 points on average from NV to TD for 3 

sprints. 

Code review 

 



Effect: Lowers the TD by a random amount. 

Cost: 3.5 points on average from NV to TD for 2 

sprints. 

No investment 

Effect: none 

Cost: none 

Start the game and explain the learners the five 

options, just to recap the concepts learned in the 

tutorial. After that, let the players choose the 

options and follow the 10-sprint cycle. 

  

In the end, check the results of all the students. 

Have the students with the higher score explain 

their method to the other students. 

 

 

Class Collaboration 

Questions to stir discussion in the classroom: 

- Does it make any sense not to develop the best solution immediately? 

- Does the need for refactoring imply that the existing code is bad and inefficient? 

- Does the concept of “Technical debt” make sense in other software development 

technologies like in the waterfall models? 

- What would be the ideal curve for technical debt? 

 



Assessment  

Have the students play the game and assess the technical debt curve they achieved, 

comparing with the “ideal” (left image) or “real ideal” (right image) curves proposed by 

Henrik Kniberg. Make students explain the relation of the curve they achieved with these 

two. 

                    

 

Auxiliary materials 

- Techopedia, Technical debt, Available at: 

https://www.techopedia.com/definition/27913/technical-debt 

- Wikipedia, Technical debt, Available at: 

https://en.wikipedia.org/wiki/Technical_debt 

- Ward Cunningham, Debt Metaphor, Available at: 

https://www.youtube.com/watch?v=pqeJFYwnkjE  

- Steve McConnell, 10x Software Development Best Practices: Technical Debt, 

Available at: 

http://www.construx.com/10x_Software_Development/Technical_Debt/ 

- Henrik Kniberg, Good and Bad Technical Debt, Available at: 

http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt 

 

https://www.techopedia.com/definition/27913/technical-debt
https://en.wikipedia.org/wiki/Technical_debt
https://www.youtube.com/watch?v=pqeJFYwnkjE
http://www.construx.com/10x_Software_Development/Technical_Debt/
http://blog.crisp.se/2013/10/11/henrikkniberg/good-and-bad-technical-debt

